

Lin Shen¹, Zhenling Yao², Dongmei Chen³, Michael Yu², Xu-Alan Lin³, Charlie Qi³, Simon Xia³, Lijuan Zhang³, Steven Yu³, Caroline Germa² ¹Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, China; ²Global R&D, Transcenta Therapeutics Inc., Princeton, United States of America; ³Global R&D, Suzhou Transcenta Therapeutics Co. Ltd., Suzhou, China

Background

Osemitamab (TST001), a humanized Claudin18.2 monoclonal antibody with enhanced antibodydependent cellular cytotoxicity (ADCC) via improved binding affinity and reduced fucosylation, is being developed to treat advanced gastric/gastroesophageal junction (G/GEJ) adenocarcinoma. Pharmacokinetics (PK), pharmacodynamics (PD) and exposure-response (ER) relationship of Osemitamab were evaluated in two phase I/IIa studies. PK exposure increased with osemitamab dose and the effective half-life was approximately 4 to 7 days¹.

FPN: 1556P

Method

- TST001-1001 (U.S. Phase 1/2 study) includes a dose escalation of osemitamab as monotherapy (part A) and dose expansion of osemitamab in combinations with standard treatments (part B) in CLDN18.2 positive G/GEJ cancers and pancreatic cancer.
- TST001-1002 (China phase 1/2 study) includes an osemitamab monotherapy part (escalation and expansion) as well as, osemitamab in combination with standard treatments part (escalation and expansion);
 - Osemitamab in combination with CAPOX as 1st line treatment in patients with G/GEJ cancers (cohort C, figure below)
 - Osemitamab in combination with CAPOX plus nivolumab as 1st line treatment in patients with G/GEJ cancers (cohort G, figure below)

Study TST001-1002 Cohort C: Osemitamab + CAPOX CLDN18.2+ 1L G/GEJ CA

	Osemitamab 6mg/kg + CAPOX + Nivolumab Q3W n = 3 - 6	Osemitamab+CAPOX+Nivolumab Q3W 3mg/kg n = 20 - 100
Osemitamab 3mg/kg + CAPOX + Nivolumab O3W n = 3 - 6		Osemitamab+CAPOX+Nivolumab Q3W 6mg/kg n = 20 - 100

Study TST001-1002 Cohort G: Osemitamab + CAPOX + Nivolumab CLDN18.2+ 1L G/GEJ CA

- PopPK was conducted on PK data collected from all subjects from Studies 1001 (U.S.) and 1002 (China); Covariate analysis was performed.
- ER relationship between PK and PFS / DoR /durable ORR (objective response lasting 6 months or more) was explored in patients treated with osemitamab in combination with CAPOX in 1L CLDN18.2 Positive G/GEJ (cohort C)
- ER safety analyses included assessment of relationship between grade 3+ TEAE/TRAE and PK exposure and grade 2+ nausea/vomiting and hypoalbuminemia
- The ADCC capacity of circulating osemitamab was analyzed in a subset of patients in study TST001-1002 (cohort G) and in study TST001-1001 by an ex vivo assay using patient serum against CLDN18.2positive target cells with healthy donor PBMC.

Pharmacokinetics, Pharmacodynamics and Exposure Response Analyses of Osemitamab (TST001) in Patients with Locally Advanced or Metastatic Solid Tumors 🦯

Result

Modeling Predicts 6 mg/kg Q3W & 4 mg/kg Q2W Achieve Target Exposure

- PK of osemitamab was adequately described by a two-compartment model with first-order elimination • PK were significantly affected by body weight and gastrectomy, but not affected by age, sex, race, baseline or time-varying albumin levels, patient baseline ECOG PS, combination drugs (Nivolumab, CAPOX, paclitaxel et al.), cancer type, ADA status, baseline tumor size, CLDN18.2 expression and 1st line vs. 2nd/3rd line treatment; Patients with gastrectomy performed had roughly 40% less CL compared with those without gastrectomy
- Modeling predicts 4 mg/kg Q2W achieves similar C_{avg} with lower C_{max} compared with 6 mg/kg Q3W

Red line: Human NUGC4 in vitro ADCC EC95 = $3.46 \,\mu g/mL$ Green line: MKN45-CLDN18.2 tumor model EC50 = 2.68 µg/mL

• ~70% subjects will achieve C_{avg.ss} above the threshold associated with better PFS/DoR (20 μg/mL) following 6 mg/kg Q3W and 4 mg/kg Q2W; only ~15% subjects will achieve similar level following 3 mg/kg Q3W and 2 mg/kg Q2W

Preliminary efficacy, safety and PK/PD data demonstrates favorable benefit risk profile and support future exploration of osemitamab at the recommended dose of 6mg/kg Q3W or 4mg/kg Q2W

Reference and Disclaimer

¹J Gong et al, A Phase I Study of TST001, a Humanized Anti-CLDN18.2 Monoclonal Antibody, in Combination with Capecitabine and Oxaliplatin (CAPOX) as a First Line Treatment of Advanced G/GEJ Cancer. ESMO 2022

ose	C _{trough,ss} (µg/mL)			C _{avg,ss} (µg/mL)			Median			
							C _{max,ss}			
	Median	% subjects ≥ 7 µg/mL ³	% subjects ≥ 3.46 μg/mL ¹	% subjects ≥ 2.68 μg/mL ²	Median	% subjects ≥ 24 μg/mL ²	% subjects ≥ 20 μg/mL ³	(µg/mL)		
ag Q2W	4.56	30.5	63.5	72.8	12.4	7.0	14.7	40.2		
kg Q2W	9.14	62.9	86.9	91.7	24.9	52.7	69.0	80.4		
kg Q3W	3.65	22.5	52.7	63.6	12.5	7.5	15.1	56.5		
kg Q3W	5.52	38.4	69.6	79.1	18.8	28.3	43.9	85.8		
kg Q3W	7.10	51.1	78.9	84.3	24.7	53.0	67.7	114		

¹Human NUGC4 in vitro ADCC EC95 (0.88-3.46 μg/mL)

 2 MKN45-CLDN18.2 tumor model EC50 = 2.68 µg/mL; EC90 = 24 µg/mL

³Treated with osemitamab in combination with CAPOX in 1L CLDN18.2 Positive G/GEJ, PFS/DoR is shorter when C_{trough,ss} < 7 µg/mL and $C_{avg, ss} < 20 \ \mu g/mL$

Serum ADCC Favors 6 mg/kg Q3W over 3 mg/kg Q3W

The median ADCC responses remained at 40%-50% of the maximum lysis up to 21 days postdose at 6 mg/kg Q3W

3 mg/kg Q3W resulted in 20%-25% of maximum ADCC response at the end of the dosing interval Similar results were observed in patients received treatment of osemitamab in combination with CAPOX plus nivolumab (Study

TST001-1002 cohort G) and in patients with

monotherapy (Study TST001-1001)

Exposure-Safety Relationship

Grade 3+ TEAEs and TRAEs do not correlate with PK exposure

Modeling found that risks of grade 2+ vomiting and hypoalbuminemia, but not nausea are associated with osemitamab exposure

Simulations predicted % of patients that developed Grade 2+ vomiting and hypoalbuminemia by 6 months were just slightly higher (5% and 11.7% respectively) following 6 mg/kg Q3W compared to 3 mg/kg Q3W

Summary and Conclusions

• ER analyses found that patients had shorter PFS/DoR with PK exposures (dose range from 1-8mg/kg) within lowest tertile ($C_{avg} < 20 \ \mu g/mL$ and $C_{trough ss} < 7 \ ug/mL$)

PopPK modeling indicated 6 mg/kg Q3W or 4mg/kg Q2W cohorts are expected to have higher proportion of subjects (4-5 folds when compared with 3 mg/kg Q3W or 2 mg/kg Q2W) achieving PK exposures associated with better PFS/DoR

Safety ER analyses didn't demonstrate clinically significant increase in risk when dose increased from 3 to 6 mg/kg Q3W

Lin Shen, chief physician of Peking University Cancer Hospital confirmed that she does not have conflicts of interest to declare on the Poster.