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Development of a CLDN18.2-targeting immuno-PET 1 

probe for non-invasive imaging in gastrointestinal 2 

tumors 3 

ABSTRACT: Claudin18.2 (CLDN18.2) is a tight junction protein that is overexpressed in a 4 

variety of solid tumors such as gastrointestinal cancer and oesophageal cancer. It has been identified 5 

as a promising target and a potential biomarker to diagnose tumor, evaluate efficacy and determine 6 

patient prognosis. TST001 is a recombinant humanized CLDN18.2 antibody that selectively binds 7 

to the extracellular loop of human Claudin18.2. In this study, we constructed a solid target 8 

radionuclide zirconium-89 (89Zr) labled-TST001 to detect the expression of in the human stomach 9 

cancer BGC823CLDN18.2 cell lines. The [89Zr]Zr-DFO-TST001 showed high radiochemical purity 10 

(RCP, >99%) and specific activity (24.15 ± 1.34 GBq/μmol), and was stable in 5% human serum 11 

albumin (HSA), and phosphate buffer saline (PBS) (>85% RCP at 96 h). The concentration of 50% 12 

maximal effect (EC50) values of TST001 and DFO-TST001 were as high as 0.413 ± 0.055 nM and 13 

0.361 ± 0.058 nM (P > 0.05), respectively. The radiotracer had a significantly higher uptake in 14 

CLDN18.2-positive tumors than in CLDN18.2-negative tumors (1.11 ± 0.02 vs. 0.49 ± 0.03, P = 15 

0.0016) 2 days post injection (p.i.). BGC823CLDN18.2 mice models showed high T/M values 96 h p.i. 16 

with [89Zr]Zr-DFO-TST001 was much higher than those of the other imaging groups. 17 

Immunohistochemistry (IHC) results showed that BGC823CLDN18.2 tumors were highly positive 18 

(+++) for CLDN18.2, while those in the BGC823 group did not express CLDN18.2 (-). The results 19 

of ex vivo biodistribution studies showed that there was a higher distribution in the BGC823CLDN18.2 20 

tumor bearing mice (2.05 ± 0.16 %ID/g) than BGC823 mice (0.69 ± 0.02 %ID/g) and blocking 21 

group (0.72 ± 0.02 %ID/g). A dosimetry estimation study showed that the effective dose of [89Zr]Zr-22 

DFO-TST001 was 0.0705 mSv/MBq, which is within the range of acceptable doses for nuclear 23 

medicine research. Taken together, these results suggest that good manufacturing practices (GMPs) 24 

produced by this immuno-positron emission tomography (immuno-PET) probe can detect 25 

CLDN18.2-overexpressing tumors. 26 
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1.  Introduction 3 

According to the cancer epidemiology report released in 2022, lung cancer is the primary cause 4 

of cancer death, followed by digestive tract tumors (such as stomach cancer, colorectal cancer, liver 5 

cancer, oesophageal cancer, etc.). In China, gastrointestinal cancers account for 45% of cancer-6 

related deaths, likely because gastrointestinal cancers are mostly diagnosed in the advanced stage 7 

and patients often have a poor prognosis[1–3]. Gastrointestinal cancers have become the primary 8 

medical and economic burden for people in China. In addition to traditional chemotherapy, and 9 

immunotherapy, little progress has been made with novel chemotherapies and targeted therapies for 10 

gastrointestinal tumors[4–7]. Among the 70 novel first-line agents approved for cancer treatment, 11 

only 5 drugs have been approved for advanced gastrointestinal cancer and the survival rates are still 12 

low based on data from the last five years[8]. Therefore, strategies to improve the survival of patients 13 

with advanced gastrointestinal cancer remain an unmet medical necessity.  14 

CLDN18.2 is a tight junction protein belonging to the CLDN protein family (CLDNs) that is 15 

involved in the formation of intercellular adhesion structures, and controls cell polarity and the 16 

exchange of substances between cells[9–11]. Its expression is strictly limited to normal gastric 17 

mucosal cells, but is overexpressed in the process of proliferation, division and metastasis of tumor 18 

cells, making it an emerging therapeutic target for digestive tract tumor therapy[12,13]. 19 

Zolbetuximab (IMAB362) is the first targeted CLDN18.2 antibody that kills tumor cells through 20 

antibody-dependent cytotoxicity(ADCC) and complement-dependent cytotoxicity(CDC), and in 21 

combination with first-line epirubicin, oxaliplatin and capecitabine (EOX) to provide longer 22 

progression-free and overall survival[14]. TST001 is an anti-CLDN18.2 monoclonal antibody 23 

developed worldwide after IMAB362. Compared to IMAB362, TST001 has a higher affinity, higher 24 

FcR binding activity due to lower fucose content and stronger NK cell-mediated ADCC tumor 25 

killing activity. In a phase I clinical study of TST001 (NCT04396821) in combination with 26 

capecitabine and oxaliplatin (CAPOX) as a first-line agent for advanced gastric/gastroesophageal 27 

junction adenocarcinoma, 73.3% achieved partial response, and 26.7% achieved stable disease[15]. 28 

A phase I study (NCT03874897) of CLDN18.2 CAR-T therapy conducted by Shen et al. [16] 29 
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showed that after receiving CLDN18.2 CAR-T infusion, the overall response rate (ORR) and 1 

disease control rate (DCR) reached 48.6% and 73.0%, respectively. Interestingly, both clinical 2 

studies indicate that the CLDN18.2 expression level was correlated with drug efficacy, showing 3 

more clinical benefit in patients with high CLDN18.2 expression in tumors. Therefore, patient 4 

selection based on CLDN18.2 expression level becomes critical for CLDN18.2-targeted therapy. At 5 

present, the major detection method of CLDN18.2 protein is immunohistochemistry (IHC), and 6 

other methods include molecular beacons and reverse transcription-polymerase chain reaction (RT‒7 

PCR)[17]. IHC is invasive, and requires endoscopic biopsy, and the sampling site and number are 8 

limited. Due to the heterogeneous nature of tumor, the CLDN18.2 distribution and dynamic changes 9 

in expression levels in patients cannot be fully reflected in real-time. Molecular imaging can be used 10 

as a noninvasive diagnostic tool to detect the expression and distribution of CLDN18.2 in the lesion 11 

using the radioactive signal emitted by the radiotracer, thereby helping to clinically screen patients 12 

with potential benefit, evaluate the efficacy of CLDN18.2 targeted therapy, and guide the accurate 13 

diagnosis and treatment of tumors. A recent study showed that 18F-fluorodeoxyglucose (FDG) 14 

positron emission tomography/computed tomography (PET/CT) parameters including maximum 15 

standard uptake value (SUVmax), metabolic tumor volume (MTV) and total lesion glycolysis (TLG) 16 

did not predict CLDN 18.2 expression status in diffuse-type gastric cancer[18]. Hu et al. [19] 17 

developed three antibodies (anti-CLDN18.2 VHH, anti-CLDN18.2 VHH-ABD and anti-CLDN18.2 18 

VHH-Fc) of different molecular weight sizes for PET/CT imaging, and identified [89Zr]-anti-19 

CLDN18.2 VHH-ABD as the most appropriate imaging agent (high tumor uptake and low uptake 20 

in the liver) in preclinical studies. However, in a subsequent clinical study, [89Zr]-VHH-Fc was 21 

found to be more specific and persistent than [89Zr]-anti-CLDN18.2 VHH-ABD, and was also 22 

considered to be a molecular imaging tracer with potential value for cancer diagnosis, as it contains 23 

CLDN18.2[20]. More recently, we explored a CLDN18.2-specific murine mAb 5C9 by DNA 24 

immunization, and modified 5C9 with 124I, Cy5.5 and FD1080. The results of these studies support 25 

the targeted therapy of CLDN18.2-positive tumors by using immuno-PET imaging and near-26 

infrared fluorescent II imaging to localize tumors and guide surgery for orthotopic CLDN18.2-27 

positive tumors[21]. 28 

Due to the superior targeting specificity and high sensitivity of molecular imaging technology, 29 
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we used the TST001 antibody produced under GMP conditions to construct the immuno-PET 1 

molecular probe [89Zr]Zr-DFO-TST001. The goal of this study was to assess the ability of [89Zr]Zr-2 

DFO-TST001 to characterize CLDN18.2 expression. 3 

2. Material and methods 4 

2.1 Materials  5 

All reagents were obtained from Sigma‒Aldrich (Shanghai, China). P-isothiocyanatobenzyl-6 

desferrioxamine B (p-NCS-Bz-DFO) was purchased from Macrocyclics (Plano, TX, USA). The 7 

GMP grade CLDN18.2 antibody TST001 was kindly provided by Suzhou Transcenta Therapeutics 8 

Co., Ltd. (Suzhou, China). Radionuclide 89Zr was produced and purified by the Cyclotron team of 9 

the Nuclear Medicine Department of Peking University Cancer Hospital (Beijing, China). The 10 

medium, fetal bovine serum (FBS), trypsin ethylene diamine tetraacetic acid (EDTA) and pen-strep 11 

solution were purchased from Biological Industries (Beijing, China). Radioimmunoprecipitation 12 

assay (RIPA) lysis buffer was obtained from Themo Fisher Scientific (Waltham, MA, USA). 13 

Diaminobenzidine (DAB) was provided by Jinqiao Biological Company (Beijing, China). PD-10 14 

column was purchased from GE Healthcare (Buckinghamshire, England). 15 

2.2 Radiolabeling of TST001 with 89Zr 16 

For 89Zr labeling, 89Zr-oxalic acid was neutralized to pH 7.0 using 0.25 M 2-[4-(2-17 

hydroxyethyl)-1-piperazinyl]ethanesulfonic acid (HEPES) and 1 M Na2CO3 buffer , and then mixed 18 

with previously described DFO-TST001 for 60 min at 37 °C. The reaction mixture was purified by 19 

a PD-10 column with 0.01 M phosphate buffer saline (PBS, 2.5 mL, pH 7.4). 20 

2.3 Small-animal PET imaging of [89Zr]Zr-DFO-TST001 21 

Normal KM mice and BGC823CLDN18.2/BGC823 model nude mice were injected with 7.4 MBq 22 

of [89Zr]Zr-DFO-TST001 via the tail vein (n = 3). Then 10 min static PET scans were acquired at 23 

each time point (2, 24, 48, and 72 h p.i.). As a non-specific control group, BGC823CLDN18.2 mice (n 24 

= 3) were fasted 6 h in advance, then injected with 7.4 MBq of 18F- FDG via the tail vein. The mice 25 

were anesthetized with 2% isoflurane before and during the 18F-FDG PET imaging. With a small-26 

animal PET/CT scanner (Super Nova PET/CT, Pingseng Healthcare, Shanghai, China), the PET 27 

images were reconstructed by Avatar 3 (Pingseng Healthcare), and the regions of interest (ROIs)-28 
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derived SUV was calculated by drawing ROIs over these organs. 1 

2.4 Ex vivo biodistribution. 2 

The KM mice were intravenously injected with 0.74 MBq of [89Zr]Zr-DFO-TST001 via the 3 

tail vein and were then sacrificed at 2, 24, 48, 72 and 144 h p.i. (n = 4). The tissues including the 4 

blood, heart, liver, spleen, lung, kidneys, stomach, intestines, muscle, bone and brain were dissected. 5 

The radioactivity of the tissues was measured using a γ-counter (PerkinElmer, Waltham, MA, USA). 6 

The radioactivity of each organ was calculated as % injected dose per gram (%ID/g). For the tumor 7 

model’s ex vivo biodistribution, female nude mice bearing BGC823CLDN18.2 and BGC823 tumor 8 

xenografts were injected by tail vein with 0.74 MBq of [89Zr]Zr-DFO-TST001 to evaluate the 9 

distribution of [89Zr]Zr-DFO-TST001 in major organs and tumors (n = 4 per group). The mice were 10 

sacrificed and dissected at 48 h p.i. (n = 4), and the tumor, kidney, blood, and other major organs 11 

were collected and weighed. The blocking study was also performed in BGC823CLDN18.2 mice by a 12 

co-injection of 0.74 MBq of [89Zr]Zr-DFO-TST001 with an excess dose of cold TST001 (1 mg). At 13 

48 h p.i., the blocked mice were sacrificed and dissected. Then, the organ biodistribution of [89Zr]Zr-14 

DFO-TST001 was determined. 15 

2.5 Dosimetry estimation 16 

For human radiation dosimetry, animal biodistribution data were obtained by the standard 17 

method of organ dissection. The human organ radiation dosimetry data were extrapolated from the 18 

biodistribution data of [89Zr]Zr-DFO-TST001 in KM mice by OLINDA/EXM 2.0 software 19 

(Vanderbilt University, Nashville, TN, USA). 20 

2.6 Statistical analysis 21 

Quantitative data are expressed as the mean ± standard deviation (SD), with all error bars 22 

denoting the SD. The means were compared using Student’s t test, and P values of less than 0.05 23 

were considered to indicate statistical significance. 24 

3. Results and discussion. 25 

3.1 Molecular characteristic of conjugation 26 

The molecular weight of the CLDN18.2 antibody, TST001, was approximately 148 kDa, which 27 
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was further determined to be exactly 148,723 Da (Fig. 1A). DFO-TST001 was chelated with an 1 

approximately double-DFO chelator with a molecular weight of 150320 Da (Fig. 1B). Sodium 2 

dodecyl sulfate polyacrylamide gel electrophoresis (SDS‒PAGE) showed that both TST001 and 3 

DFO-TST001 had bands at approximately 150 kDa with no other bands (Fig. 1C), which indicated 4 

that the conjugation was of excellent quality as no antibody aggregates or antibody fragments were 5 

detected. The enzyme-linked immunosorbent assays (ELISA) results showed that the EC50 value of 6 

DFO-TST001 binding to CLDN18.2 was not significantly different from that of TST001 (0.413 nM 7 

± 0.055 nM vs. 0.361 ± 0.058 nM, P > 0.05, Fig. 1D). The binding assay demonstrated both TST001 8 

and DFO-TST001 can form a strong bond with CLDN18.2, and the conjugation of the chelator DFO 9 

had no impact on the affinity of TST001 to CLDN18.2. 10 

3.2 Radiosynthesis, quality control, and in vitro stability 11 

The synthesis process of [89Zr]Zr-DFO-TST001 is shown in Fig. 2A. [89Zr]Zr-DFO-TST001 12 

was manually prepared with a radiolabeling yield of 74.64% ± 4.41% (n = 3, nondecay corrected). 13 

The RCP of [89Zr]Zr-DFO-TST001 was more than 99% in 0.01 M PBS (pH 7.4) (Fig. 2B). The in 14 

vitro stability of [89Zr]Zr-DFO-TST001 in 0.01 M PBS or 5% human serum albumin (HSA) was 15 

demonstrated by an RCP of more than 85% after 96 h at room temperature (RT). (Fig. 2C). The 16 

excellent in vitro stability also showed that the TST001 structural modification and labeling method 17 

was feasible. Quality control results are shown in Table 1.  18 

3.3 In vitro CLDN18.2 expression of cell lines. 19 

Western blotting results confirmed that the expression of CLDN18.2 in BGC823CLDN18.2 cells 20 

was significantly different from that in BGC823 cells (Fig. 3A). The relative expression of 21 

CLDN18.2 in the BGC823CLDN18.2 and BGC823 cell lines was 1.37 ± 0.24 and 0.23 ± 0.01, 22 

respectively (P = 0.0013, Fig. 3B). Flow cytometry experiments revealed that 86.2% of cells were 23 

positively stained with anti-CLDN18.2 antibody (1D5) in the BGC823CLDN18.2 group (Fig. 3C). The 24 

differences in CLDN18.2 expression measured by western blotting and flow cytometry were then 25 

validated between the human gastric cancer cell lines BGC823 and BGC823CLDN18.2. The result of 26 

the cellular uptake experiment showed that the uptake of [89Zr]Zr-DFO-TST001 in BGC823CLDN18.2 27 

cells increased in a time-dependent manner (7.33% ± 0.84% at 10 min, 7.97% ± 0.56% at 30 min, 28 
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11.47% ± 0.32% at 60 min and 13.37% ± 2.04% at 120 min), while no significant changes were 1 

observed in the BGC823 group (4.21% ± 0.21% at 10 min, 3.77% ± 0.53% at 30 min, 4.57% ± 0.36% 2 

at 60 min and 5.54% ± 0.21% at 120 min). The uptake by BGC823CLDN18.2 cells (CLDN18.2 positive) 3 

was significantly higher than that by BGC823 cells (CLDN18.2 negative) at each selected time point 4 

(P < 0.0004). Meanwhile, an excess of unlabeled TST001 significantly blocked the uptake of 5 

[89Zr]Zr-DFO-TST001 (11.47% ± 0.32% vs. 3.24% ± 0.36% at 60 min, 13.37% ± 2.04% vs. 5.64% 6 

± 0.21% at 120 min) (Fig. 3D). In the cellular uptake experiment, the uptake of [89Zr]Zr-DFO-7 

TST001 by BGC823CLDN18.2 cells at 60 min was 2.51-fold higher than that of BGC823 cells and 8 

3.54-fold higher than that of the blocking group. The specificity of [89Zr]Zr-DFO-TST001 for 9 

CLDN18.2 was thus demonstrated at the cellular level. 10 

3.4 Dosimetry estimation 11 

The biodistribution study of [89Zr]Zr-DFO-TST001 demonstrated favorable pharmacokinetics 12 

with a relatively long half-life in vivo (Fig. S1A). Human organ radiation dosimetry is shown in 13 

Table 2. The liver received the highest dose (0.360 mSv/MBq), followed by the gallbladder wall 14 

(0.155 mSv/MBq). The effective dose was 0.0705 mSv/MBq. When a patient was injected with 74 15 

MBq of [89Zr]Zr-DFO-TST001 for imaging, its effective radiation dose was less than 5.217 mSv, 16 

which is acceptable in routine nuclear medicine research. The estimated human radiation burden 17 

due to a single i.v. [89Zr]Zr-DFO-TST001 injection is comparable to that of other 89Zr-labelled 18 

monoclonal antibodies [22–24], and is suitable for clinical research. 19 

3.5 Small-animal PET/CT imaging and IHC analysis 20 

Small-animal PET/CT imaging at different time points (2, 24, 48, 72 and 120 h) after injection 21 

of [89Zr]Zr-DFO-TST001 into KM mice, showed high uptake in the heart, liver and spleen 22 

(Supporting Information Fig. S1B). The standard uptake value average (SUVmean) of some organs 23 

measured by ROIs is shown in Supporting Information Fig. S1C. After 2 h, the SUVmean was 2.57 24 

± 0.02 in the heart, 2.27 ± 0.01 in the liver and 1.86 ± 0.01 in the spleen, respectively. The ratio of 25 

heart to muscle (H/M) was 20.30 ± 0.91. After 120 h, the SUVmean in the heart, liver and spleen 26 

were 0.49 ± 0.01, 1.36 ± 0.02 and 1.21 ± 0.01, respectively, and almost no special intake was 27 

observed in the stomach. The images are consistent with the biodistribution results. 28 
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The in vivo distribution and metabolic characteristics of [89Zr]Zr-DFO-TST001 were evaluated 1 

in real time and noninvasively via small-animal PET/CT imaging at 2, 24, 48, 72 h and 96 h p.i. of 2 

the radiotracer. Meanwhile, we set up the following three control groups, which were blocked by 3 

excess TST001, negative CLDN18.2 expression in BGC823 cells and nonspecific targeting of 4 

[89Zr]Zr-DFO-IgG (7.4 MBq), respectively. SUVmean data were collected for organs of 5 

BGC823CLDN18.2 or BGC823 mice by outlining the ROI from the immune-PET images (Fig. 4). The 6 

tumor sites in the [89Zr]Zr-DFO-TST001 group still had obvious uptake at 96 h p.i. In the 7 

BGC823CLDN18.2 model with [89Zr]Zr-DFO-TST001, the SUVmean continued to increase within 48 8 

h p.i. and reached a maximum uptake value of 1.09 ± 0.03 at 48 h. In addition, until 96 h p.i., the 9 

SUVmean of the BGC823CLDN18.2 model was significantly different from that of the BGC823 model 10 

and blocking group (1.03 ± 0.03, 0.41 ± 0.05, 0.51 ± 0.07, respectively, P < 0.0002). Using [89Zr]Zr-11 

DFO-IgG as a negative control probe, the results showed that in the BGC823CLDN18.2 model mice 12 

except for the tumor uptake value slightly higher than [89Zr]Zr-DFO-TST001 at 2 h after injection 13 

(0.51 ± 0.01 vs. 0.37 ± 0.02), the [89Zr]Zr-DFO-IgG tumor uptake value at all other time points (24 14 

h, 48 h, 72 h and 96 h) was significantly lower than that of [89Zr]Zr-DFO-TST001 (0.55 ± 0.04 vs. 15 

0.96 ± 0.12, 0.53 ± 0.02 vs. 1.10 ± 0.12, 0.54 ± 0.04 vs. 1.06 ± 0.06 and 0.47 ± 0.01 vs. 1.03 ± 0.01) 16 

(Fig. S2). Over time, compared with other imaging groups, the uptake of [89Zr]Zr-DFO-TST001 17 

was mostly concentrated in the tumor in the BGC823CLDN18.2 model, and the uptake values of the 18 

heart, liver, and other organs were greatly reduced. 19 

For comparison with the gold-standard probe 18F- FDG, BGC823CLDN18.2 tumor-bearing mice 20 

were given 18F-FDG and images were collected 1 h p.i. (Fig. 5A). The results showed that the uptake 21 

of 18F-FDG in CLDN18.2-positive mice was similar to the background uptake. The tumor 22 

accumulation of [89Zr]Zr-DFO-TST001 in BGC823CLDN18.2 mice 48 h p.i. was approximately 4.15-23 

fold that of the blocking group, 2.27-fold that of the BGC823 group, and 2.05-fold that of the 24 

[89Zr]Zr-DFO-IgG group (SUVmean values were 1.11 ± 0.02, 0.27 ± 0.01, 0.49 ± 0.03, 0.54 ± 0.06, 25 

respectively) (Fig. 5B). The tumor/heart (T/H) ratios and tumor/muscle (T/M) ratios at each time 26 

point after injection of [89Zr]Zr-DFO-TST001 were significantly higher than those of the other 27 

control groups (Figs. 5C and D), and at 96 h p.i., the T/H and T/M ratios reached their maximum of 28 

2.37 ± 0.04, 14.95 ± 1.63, respectively. 29 
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The T/NT value of [89Zr]Zr-DFO-TST001 was significantly different 48 h p.i. when comparing 1 

the BGC823CLDN18.2 model to other groups. Compared with our previous research, TST001 is a 2 

humanized antibody with better immune responsiveness to the CLDN18.2 receptor. Second, the 3 

patient needs to receive iodine to block the thyroid gland before and during 124I imaging, which 4 

greatly reduces patient compliance[21]. Labelling with 89Zr would appear to be more robust and 5 

better available. Nevertheless, a remarkably high background in the liver and spleen was also noted 6 

with [89Zr]Zr-DFO-TST001, which might be a result of nonspecific binding and hepatobiliary 7 

clearance. This is very similar to previous studies on the 89Zr-labelled antibody[25,26]. From an 8 

imaging perspective, this not only results in problems for tumor localization in the liver and spleen 9 

region, but it also might lead to false-positive results when “tumor CLDN18.2 expression” and 10 

further cause erroneous selection of candidate patients for this therapy. Although the interactions 11 

between FcγR expressed on immune effector cells and the Fc region of antibodies can trigger 12 

antibody-mediated therapeutic responses, they may not be favorable in the context of molecular 13 

imaging. According to our research, there are three initial resolutions to reduce nonspecific uptake 14 

by the liver and spleen[27,28]. Firstly, the preparation of probes using antibody fragments such as 15 

Fab, F(ab)2 to replace intact antibodies not only avoids the interaction of the Fc region with the 16 

immune system, but also allows the probes to have a faster pharmacokinetic profile. Secondly, 17 

another strategy is predicated on genetically engineering the Fc region of an IgG to abrogate its 18 

binding with FcγRs on immune cells while maintaining its ability to bind FcRn. Thirdly, a more 19 

facile and modular approach may lie in manipulating the glycans of the Fc region. In addition, from 20 

the nature of the nuclide, 89Zr is a radioactive metal ion that first ligates the antibody by a suitable 21 

chelating agent (typically using a lysine group) and then indirectly labels the antibody by non-22 

covalently chelating the radioactive metal ion. Once antibodies have been internalized into the 23 

tumor cells, they are subject to catabolism through lysosomal degradation. The catabolites of 24 

radiometal ion chelates remain trapped (residualized) inside the cells, leading to an accumulation of 25 

radiometal (and PET signal) in the target tumor t issue and metabolic organ over time. However, 26 

iodine is usually labeled directly onto antibodies through a simple and widely used procedure, and 27 

most iodine-containing catabolites are nonpolar molecules that are rapidly lost from the liver and 28 

spleen[29]. Based on this property of radionuclide iodine, we are also conducting a study related to 29 
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124I labeled TST001, which may be more suitable for clinical translation in the future. 1 

We also performed 18F-FDG PET/CT imaging as a reference. The tumor SUVmean of [89Zr]Zr-2 

DFO-TST001 was higher than that of 18F-FDG (1.10 ± 0.12 vs. 0.40 ± 0.02) at the tumor sites in 3 

the BGC823CLDN18.2 model, and the T/M value of [89Zr]Zr-DFO-TST001 was also much higher than 4 

that of 18F-FDG (10.23 ± 1.30 vs. 1.80 ± 0.22). 5 

The results of IHC revealed high and homogenous CLDN18.2 expression in BGC823CLDN18.2 6 

tumors, and the BGC823 xenograft tumors were negative for CLDN18.2 (Fig. 5E). The stomachs 7 

of BGC823CLDN18.2 and BGC823 tumor-bearing mice showed substantially positive expression of 8 

CLDN18.2. Neither the liver nor spleen tissue of the two types of tumor-bearing mice expressed 9 

CLDN18.2. The IHC results showed that the BGC823CLDN18.2 tumors were strongly positive for 10 

CLDN18.2 (+++), while the BGC823 tumors were negative (-), which was consistent with the 11 

imaging and western blotting results. These results prove that the [89Zr]Zr-DFO-TST001 probe we 12 

constructed has the ability to specifically target CLDN18.2. In addition, a strong positive expression 13 

of CLDN18.2 (+++) was also observed in the gastric mucosa of all mice, but neither PET/CT 14 

imaging nor biodistribution showed any obvious uptake and retention of the probe in the stomach, 15 

likely because the expression of CLDN18.2 in vivo was limited to the gastric mucosa, and 16 

monoclonal antibodies had difficulty accessing the hidden CLDN18.2 binding epitope in the gastric 17 

mucosa[30] (Fig. S3). 18 

3.6 Ex vivo biodistribution 19 

The biodistribution of [89Zr]Zr-DFO-TST001 in BGC823CLDN18.2 and BGC823 tumor–bearing 20 

mice is presented in Fig. 6. At 48 h p.i., the livers in all three groups showed relatively high uptake 21 

(8.39 ± 0.59 %ID/g in BGC823CLDN18.2 group, 9.28 ± 0.19 %ID/g in BGC823 group and 20.96 ± 22 

0.88 %ID/g in blocking the group, respectively). The uptake value of the spleen was second to that 23 

of the liver (3.54 ± 0.26 %ID/g in BGC823CLDN18.2 group, 2.08 ± 0.29 %ID/g in BGC823 group and 24 

1.93 ± 0.24 %ID/g in the blocking group, respectively). Tumor uptake in BGC823CLDN18.2 tumor 25 

bearing mice was higher (2.05 ± 0.16 %ID/g) than that in the BGC823 mice (0.69 ± 0.02 %ID/g) 26 

and blocking group (0.72 ± 0.02 %ID/g). (Fig. 6A). The tumor/liver (T/L) and tumor/brain (T/B) 27 

ratios of BGC823CLDN18.2 tumors were significantly higher than those of the other two control groups. 28 

(T/L: 0.075 ± 0.001 in the BGC823 group vs. 0.25 ± 0.003 in the BGC823CLDN18.2 group vs. 0.035 29 
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± 0.002 in the blocking group, T/B: 16.03 ± 1.66 in the BGC823 group vs. 40.35 ± 3.68 in the 1 

BGC823CLDN18.2 group vs. 3.01 ± 0.53 in the blocking group, Figs. 6B and D). The tumor/stomach 2 

(T/S) ratios were not significantly different among the three groups (2.00 ± 0.13 in BGC823 vs. 3 

2.04 ± 0.43 in BGC823CLDN18.2 vs. 1.47 ± 0.50 in blocking group, Fig. 6C). Consistent with the 4 

PET/CT results, in vitro biodistribution data at 48 h p.i. showed that [89Zr]Zr-DFO-TST001 5 

aggregated in the liver and spleen, and the liver uptake in the blocking group was significantly 6 

higher than that in the other two groups, possibly because tumor uptake was blocked, resulting in 7 

the probes entering the liver directly through the bloodstream for metabolism. The difference in 8 

tumor uptake values in the three groups also reflects the excellent specificity of [89Zr]Zr-DFO-9 

TST001 for CLDN18.2-positive tumors. 10 

4. Conclusion   11 

We successfully prepared 89Zr labelling of a GMP grade anti-CLDN18.2 recombinant 12 

humanized antibody TST001. [89Zr]Zr-DFO-TST001 exhibited good specificity at the cellular level 13 

and rapid tumor accumulation which remained positive from 24 to 96 h. It provides a promising 14 

molecular probe for detecting the treatment effects of therapeutic antibodies in humans in real time. 15 

It also provides a possibility for the screening and efficacy evaluation of patients targeted for 16 

CLDN18.2 therapy in the future. 17 
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Figure captions 1 

Fig. 1. Molecular characterization of TST001 and desferrioxamine-TST001 (DFO-TST001). (A) 2 

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) of 3 

TST001. (B) MALDI-TOF-MS of DFO-TST001. (C) Nonreducing sodium dodecyl sulfate-4 

polyacrylamide gel electrophoresis (SDS-PAGE) characterization. (D) Binding of TST001 and 5 

DFO-TST001 to human CLDN18.2 protein was evaluated by enzyme-linked immunosorbent assays 6 

(ELISA). 7 

 8 

Fig. 2. Synthesis, quality control and vitro stability of [89Zr]Zr-DFO-TST001. (A) Synthesis and 9 

radiolabelling of [89Zr]Zr-DFO-TST001. (B) Radio-thin-layer chromatography scanner (Radio-10 

TLC) results of [89Zr]Zr-DFO-TST001 before and after purification. (C) In vitro stability of 11 

[89Zr]Zr-DFO-TST001 12 

 13 

Fig. 3. CLDN18.2 expression in two cell lines, and cellular uptake of [89Zr]Zr-DFO-TST001. (A) 14 

Western blotting results of CLDN18.2 expression in the BGC823CLDN18.2 and BGC823 cell lines. 15 

(B) Relative expression of CLDN18.2 in BGC823CLDN18.2 and BGC823 cells (results are shown as 16 

the mean ± SD, n = 3). (C) Flow cytometry histogram of BGC823CLDN18.2 and BGC823 cells. (D) 17 

Cellular uptake of [89Zr]Zr-DFO-TST001 in BGC823CLDN18.2 and BGC823 cells. (**, P< 0.05, ***, 18 

P< 0.001, ****, P< 0.0001). 19 

 20 

Fig. 4. Small-animal positron emission tomography (PET) images of BGC823CLDN18.2 or BGC823 21 

tumor mice injected with [89Zr]Zr-DFO-TST001 or [89Zr]Zr-DFO-IgG. (A) Small-animal PET 22 

images of four different groups at 2, 24, 48, 72 and 96 h. (B) Standard uptake value average 23 

(SUVmean) of [89Zr]Zr-DFO-TST001 in the organs of BGC823CLDN18.2 mice (C) SUVmean of 24 

[89Zr]Zr-DFO-TST001 in organs of BGC823CLDN18.2 mice with unlabelled TST001 blockade. (D) 25 

SUVmean [89Zr]Zr-DFO-TST001 in the organs of BGC823 mice. (E) SUVmean of [89Zr]Zr-DFO-26 

IgG in organs of BGC823CLDN18.2 mice.  27 

 28 
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Fig. 5. Analysis of small-animal PET imaging. (A) Section images of tumor uptake 48 h p.i. were 1 

compared to section images of 18F-fluorodeoxyglucose (18F-FDG) in BGC823CLDN18.2 mice 1 h p.i. 2 

(B) SUVmean in the organs of different experimental group mice in organs at 48h. (C) Tumor/Heart 3 

at each point p.i. (D) Tumor/Muscle at each point p.i. (E) Immunohistochemistry (IHC) analysis of 4 

CLDN18.2 expression in BGC823CLDN18.2 (++) (e1) and BGC823 (-) (e2) tumors. (***, P< 0.001). 5 

Fig. 6. Biodistribution in the three different tumor models 48 h p.i. (A) Biodistribution of three 6 

different tumor models p.i. 48 h. (B) Tumor/Liver p.i. 48 h. (C) Tumor/Stomach 48 h p.i.. (D) 7 

Tumor/Brain 48 h p.i. (***, P< 0.001; ****, P<0.0001; ns, no significant difference in statistics). 8 

 9 

 10 

 11 

 12 

Table 1. Quality control of [89Zr]Zr-DFO-TST001 13 

Parameter QC specification QC result 

Appearance Clear, colorless Pass 

Volume 1-2 mL 1 mL 

pH 4.0-8.0 7.4 

Radiochemical purity >95% >99% 

Ethanol <5% 0 

Endotoxins <15 EU/mL Pass 

Sterility Sterile Pass 

Specific activity 18.5-296 GBq/μmol 24.15 ± 1.34 GBq/μmol 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

Jo
urn

al 
Pre-

pro
of



 

 
17 

 

Table 2. Estimates of the mean absorbed radiation dose 1 

Organ mSv/MBq (10-2) 

Adrenals 13.10 

Brain 3.08  

Oesophagus 7.94 

Eyes 1.55  

Gallbladder Wall 15.50 

Left colon 3.65  

Small Intestine 5.86  

Stomach Wall 6.15  

Right colon 4.82  

Rectum 2.96  

Heart Wall 9.19  

Kidneys 13.30 

Liver 36.00 

Lungs 20.00 

Pancreas 6.66  

Prostate 1.18 

Salivary Glands 1.41  

Red Marrow 4.61 

Osteogenic Cells 10.90 

Spleen 13.80 

Testes 0.48 

Thymus 5.37  

Thyroid 3.68  

Urinary Bladder Wall 0.81 

Total Body 2.72  

Effective Dose 7.05 
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Highlights 

⚫Development of radiolabeled a GMP grade anti-CLDN18.2 antibody PET probe. 

⚫ High affinity to CLDN18.2 in vitro and in vivo. 

⚫ This tracer can noninvasively report CLDN18.2 expression in different tumors. 
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